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Libraries of structurally diverse “natural product-like” mol-
ecules form the basis for understanding biological processes in
small molecule-based systematic approaches. Libraries of struc-
turally diverse natural products should be equally useful, and
several groups are working on combinatorial biosynthetic ap-
proaches to construct such libraries.1 As part of a recent
investigation of an endophytic fungus from Costa Rica, we
discovered a remarkable family of structurally diverse diterpenes
that provides some insight into how nature constructs libraries
of natural products.

Initially we were interested in the natural products of fungus
CR115 because at least one of them, guanacastepene A (1),2,3

had antibiotic activity against drug resistant strains ofStaphylo-
coccus aureusand Enterococcus faecalis.2,4 During the course
of that study it became clear that CR115 produces a family of
related but structurally diverse metabolites. These metabolites,
which are shown in Figure 1, comprise five ring systems (Figure
2) decorated with a variety of functional groups. Additional
tautomeric and conformational equilibria in many of the metabo-
lites give still greater structural diversity.

Both a traditional morphological assessment and ribosomal
DNA (rDNA) sequencing were performed in an attempt to
characterize CR115. CR115 did not produce spores under any
conditions tested, and no other morphological characteristics were
observed that would suggest its phylogeny.5 A BLAST search
with the sequence derived from the polymerase chain reaction-
amplified internal transcribed spacers (ITS1 and ITS2) and the
5.8S rDNA gene did not identify any sequences that were identical
to CR115.6 The most closely related sequence, an uncharacterized
oat root Basidiomycete, shows 90% similarity over the ITS1,
ITS2, and the 5.8S rDNA regions.7 This rDNA sequence data, in
conjunction with the failure of traditional taxonomic identification,
suggests that CR115 likely represents a previously undescribed
Basidiomycete.

Guanacastepenes B-O (2-15)were isolated from the organic
extracts of neutralized cultures of CR115 grown in potato dextrose
broth. Structures for all of the guanacastepenes were determined
by X-ray crystallography8 and corroborated by high-resolution
mass spectrometry.9 The absolute configurations of guanacaste-

penes E and L were determined by X-ray crystallography to be
as drawn in Figure 1 using anomalous dispersion from the C-5
p-bromobenzoyl derivative of each natural product.10

The guanacastepenes are more structurally diverse than the
individual compounds characterized by X-ray crystallography
suggest. Low-temperature NMR and molecular modeling experi-
ments run on guanacastepene A indicate that it exists in two
conformations due to conformational flexibility in the C9-C10
bond at the bottom of the central seven-membered ring. This
flexibility is further supported by the fact that the C9-C10 bond
crystallizes in an alternative conformation in guanacastepene A
(C-8-9-10-11 dihedral angle+93.6°) than it does in the other
guanacastepenes (C-8-9-10-11 dihedral angles range from
-68.4° to -93.0°). NMR experiments also suggest that the
hemiacetal in guanacastepene I may exist in both the open and
closed forms. As reported in other terpenoids many of the alcohols
in the guanacastepene family appear as epimers.11 Guanacaste-
penes N and O, C-13 acetate epimers, were isolated and
characterized as separate compounds.

Guanacastepene I (9) is the only newly characterized guana-
castepene with pronounced antibacterial activity in agar diffusion
assays againstS. aureus.12 On the basis of these limited studies,
a C-15 aldehyde, as in guanacastepene A, or a masked C-15
aldehyde, as in guanacastepene I, appears to be a requirement
for activity in this assay. Although the other guanacastepenes do
not show antibacterial activity at 50µg per disk, they could be
active at higher concentrations, and they are likely to be active
in other assays. The spectrum of guanacastepenes produced by
CR115 varies from fermentation to fermentation, and this
variability has limited the supplies currently available for testing.

The guanacastepenes characterized to date represent only a
fraction of the compounds present in the CR115 extract; however,
they appear to provide some insight into the origin of this
structurally diverse family of natural products. Figure 1 depicts
some hypothetical biosynthetic relationships within the guana-
castepenes. The tricyclic guanacastepenes A, B, and C are the
simplest members of this family of compounds. The successive
oxidation and functionalization of these simple compounds or
compounds similar to them likely give rise to the more complex
ring systems,17-20 (Figure 2). There appear to be two major
biosynthetic branches responsible for the formation of more
complex guanacastepenes (Figure 1). One group of compounds
may arise from an intramolecular Michael addition by the C-15
alcohol at C-2 in guanacastepene C-like precursors (transformation
I, Figure 1). A second group of guanacastepenes with more highly
oxidized five-membered heterocycles (transformation II) may arise
from the intermolecular Michael addition of water (transformation
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III) or ethanolamine (transformation IV) at C-2 in guanacastepene
A-like precursors followed by the reoxidation of the C-1/C-2
double bond. Both families then appear to undergo similar
isopropyl methyl oxidations to give either the norbornane-
containing ring system19 (transformation V) seen in guanacaste-
pene K (11) or the pentacyclic ring system20 (transformation
VI) seen in guanacastepenes L and M. The novel diterpene carbon
skeleton19 likely results from the oxidation of an isopropyl
methyl (C-19/C-20) to an aldehyde followed by an aldol
condensation at C-1. In addition to the important ring generating
biosynthetic transformations highlighted in Figure 1, there also

appear to be a number of traditional terpenoid oxidation/reduction
and conjugation (methylation and acetylation) pathways involved
in the biosynthesis of the guanacastepenes.

The chemical diversity of the guanacastepenes could either arise
from multiple biosynthetic pathways working in concert or a
single highly branched biosynthetic grid analagous to synthetic
libraries of natural product-like compounds that are derived either
from parallel syntheses or from large split and pool syntheses. It
is likely that the structural diversity of the guanacastepenes
represents CR115’s attempt to maximize the molecular diversity
of its chemical arsenal while minimizing metabolic costs.13

Understanding the details of how CR115 solves this optimization
problem and comparing this solution with laboratory solutions
should provide interesting insights. Genetic and biochemical
studies currently underway should help elucidate the biosynthetic
mechanism(s) that lead to the creation of this structurally diverse
family of natural products.
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Figure 1. Guanacastepenes A-O are organized to show possible biosynthetic relationships within this family of natural products. A few oxidations and
transformations (I-VI) that could explain the origin of each ring system have been highlighted. The absolute configuration of guanacastepenes E and
L was determined to be as it is shown.

Figure 2. Five ring systems produced and functionalized by CR115 to
create the guanacastepenes.
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