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ABSTRACT: The forces that shape human microbial ecology are
complex. It is likely that human microbiota, similarly to other
microbiomes, use antibiotics as one way to establish an ecological
niche. In this study, we use functional metagenomics to identify
human microbial gene clusters that encode for antibiotic functions.
Screening of a metagenomic library prepared from a healthy patient
stool sample led to the identification of a family of clones with inserts
that are 99% identical to a region of a virulence plasmid found in avian
pathogenic Escherichia coli. Characterization of the metagenomic
DNA sequence identified a colicin V biosynthetic cluster as being
responsible for the observed antibiotic effect of the metagenomic clone against E. coli. This study presents a scalable method to
recover antibiotic gene clusters from humans using functional metagenomics and highlights a strategy to study bacteriocins in the
human microbiome which can provide a resource for therapeutic discovery.
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The human microbiome is home to hundreds of unique
bacterial species whose collective function is believed to

have a role in human health and disease.1,2 The mechanisms
through which diverse bacterial species are able to form a stable
ecosystem in humans are poorly understood.3 It is likely,
however, that microbiota-produced antibiotics play an
important role in the ecology of the human microbiome, as
has been seen in other ecosystems, and that these antibiotics
may represent a resource for therapeutic discovery.4,5 The
inability to culture many bacterial species found in the human
microbiome limits the utility of traditional culture-based
methods for identifying the antibiotics they produce. Func-
tional metagenomic screening methods circumvent the
culturing requirement and provide a culture-independent
screening approach to characterize bioactivities encoded in
the collective human microbial metagenome. Such studies rely
on cloning large fragments of DNA extracted directly from
environmental samples (environmental DNA, eDNA) into a
model bacterial host and screening the resulting eDNA clones
for phenotypes associated with a desired trait.6 Here, we used
functional metagenomics to identify an antibacterially active
clone in a cosmid library of DNA extracted from the stool of a
healthy patient.
A single stool sample was collected from a healthy patient,

defined as a patient having no known bowel disease, bowel
surgery, antibiotic use in the previous 6 months, or symptoms
suggestive of an intestinal disease. A metagenomic library was
created using an established method for constructing cosmid-
based metagenomic libraries from human stool.7 Briefly, 6 g of

fresh stool was washed twice with a sodium chloride solution
(0.9%). The washed stool was collected by centrifugation and
resuspended in the same sodium chloride solution. Approx-
imately 15% of this sample was partitioned by Nycodenz
gradient centrifugation. The upper layer containing commensal
bacteria was removed, and bacteria were pelleted by
centrifugation. The pellet was resuspended in lysis buffer and
incubated at 70 °C for 2 h. eDNA was isopropanol precipitated
from the resulting bacterial lysate, washed with 70% ethanol,
and resuspended in TE (Tris-EDTA) buffer. This crude eDNA
extract was then separated by preparative agarose gel
electrophoresis and high molecular weight (∼40 kb) DNA
was electroeluted from the DNA compression band at the top
of the gel. Purified high molecular weight DNA was blunt
ended, ligated with the broad host-range cosmid vector pJWC1,
packaged into lambda phage, and transfected into E. coli
EC100, and transformants were selected using tetracycline (15
μg/mL).8 Titers obtained from the initial library plating step
indicated the stool metagenomic DNA library contained in
excess of 1 × 106 unique cosmid clones. The final metagenomic
library was washed from the selection plates with 10% glycerol
and archived at −80 °C as one combined glycerol stock.
While the metagenomic library we constructed contains in

excess of 1 × 106 unique cosmid clones, deep sequencing
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studies of human microbiomes suggest that a significant portion
of the gene diversity in the microbiota can be captured in as
little as 1 GB of sequenced DNA.9 1 GB of DNA corresponds
to ∼30 000 cosmid clones (35 kb average insert × 30 000 =
1.05 GB), indicating that only a small fraction must be screened
to explore a significant portion of the gene diversity present in
this healthy patient’s microbiome. To screen for antibacterially
active clones, the library was plated on LB agar (15 μg/mL
tetracycline) at a density of ∼1000 colony forming units (CFU)
per 150 mm plate. Colonies were allowed to mature at 30 °C
for 5 days and overlaid with top agar containing either E. coli or
Bacillus subtilis as indicator strains (Figure 1). Indicator strains
were allowed to grow for 24 h at 37 °C, and antibiotic
producing clones were identified by the appearance of zones of
growth inhibition in the emergent lawn of the indicator
bacteria. In total, 30 000 library members were screened using
each indicator strain. No clones were found to produce zones
of growth inhibition against B. subtilis; however, two
metagenomic clones were observed to inhibit the growth of
E. coli (Figure 1). Because the initial small-scale assay
successfully identified antibacterial activities against E. coli, we
expanded the search for E. coli active clones by looking for
clones that inhibited the growth of other library members when
plating at a much higher density (∼45 000 CFU per plate,

∼350 000 clones in total). In this larger scale screen, the
antibiosis hit rate remained approximately 1 out of every 30 000
library members. In total, we identified 12 clones that showed
reproducible antibacterial activity against E. coli.
To determine whether a secreted product mediated the

observed antibacterial activities, cultures of each active
metagenomic clone were passed through a 0.22 μM filter to
remove viable bacteria and each sterile, spent culture broth
filtrate was assayed for antibiosis against E. coli. Consistent with
the production of a secreted antibiotic, the culture broth filtrate
from each clone was antibacterially active. Ethyl acetate extracts
were then created from the culture broth of each antibacterially
active clone and assayed for antibiosis against E. coli. These
extracts failed to show any antibiotic activity indicating that the
activity was not the result of the production of an organic
extractable small molecule. As water-soluble antibiotics can be
quite challenging to characterize, we proceeded to study each
clone through full sequencing and bioinformatic analysis.
Restriction mapping of cosmids isolated from an active clone

showed a subset of conserved restriction fragments present in
all cosmids suggesting that they represented a collection of
overlapping metagenomic DNA sequences. One representative
antibacterially active clone (human stool metagenome clone 1,
HSM-C1) was fully sequenced (Figure 2). The terminal regions

Figure 1. Functional metagenomic screen for antibiotics. (A) Samples of metagenomic DNA can be isolated from any part of the human
microbiome and cloned into a cosmid DNA library (B). Cosmids containing metagenomic DNA are introduced into heterologous bacterial hosts,
where foreign metagenomic DNA is expressed. (C) Metagenomic clones are plated on agar and allowed to produce potential antibiotics encoded on
the piece of metagenomic DNA. Indicator strains are overlaid on top of the metagenomic clones, and active metagenomic clones are identified by
inhibition of growth of the indicator strain, producing a zone of clearing. Pictured is an active metagenomic clone inhibiting the growth of an E. coli
indicator strain.

Figure 2. Active metagenomic clone DNA sequence. The metagenomic DNA insert contains three gene clusters with predicted virulence functions
including colicin V, colicin E9, and a protease toxin. The flanking regions of the DNA contain mobile element genes. Transposon insertion sites in
the genes of the colicin V cluster are pictured.
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of the metagenomic DNA insert from the other 11 clones were
sequenced using vector specific primers and confirmed to map
to portions of the fully sequenced clone metagenomic DNA
insert suggesting overlapping metagenomic DNA inserts. HSM-
C1, which contains a 31 kB metagenomic DNA insert, was used
for all subsequent analyses.
Bioinformatic analysis of the metagenomic DNA insert in

HSM-C1 identified two predicted bacteriocin gene clusters
(Colicin V and Colicin E9) and a predicted protease with
similarity to the tsh gene in E. coli (Figure 2).10 The function of
this class of protease is still unclear, but it has conserved regions
similar to serine proteases with activity against human IgA,
hemoglobin, or coagulation factor V (Figure 2). The full 31 kB
metagenomic insert was searched against the NCBI nr data set
and found to be 99% identical to regions from three virulence
plasmids isolated from avian pathogenic E. coli (APEC).11 A
blastN search of reference genomes from human microbiome
isolates, including 31 E. coli isolates (Human Microbiome
Project, www.hmpdacc.org), failed to identify an identical 31 kB
region.
To identify the specific genetic elements responsible for

encoding the observed antibacterial activity, the fully sequence
cosmid was transposon mutagenized using the EZ-Tn5 system
(Epicentre). The transposon reaction was electroporated into
E. coli, and successful transposon mutants were identified by
selection on LB agar containing kanamycin (50 μg/mL). 100
transposon mutants were screened for antibacterial activity
against the original E. coli indicator strain, and 8 mutants were
found to no longer inhibit E. coli growth. Cosmid DNA isolated
from each antibiosis knockout mutant was Sanger sequenced
using primers designed to recognize the ends of the transposon.
The eight knockout transposons inserted into three different
genes that are predicted to be part of a colicin V gene cluster:
cvaA, cvaB, and cvaC (Figure 2). cvaC encodes the colicin V
precursor peptide, while cvaA and cvaB encode MDR-like
transport proteins that shuttle colicin V across the inner
membrane.12,13 Secretion of colicin V across the outer bacterial
membrane is dependent on tolC-like transporters that are
generally encoded chromosomally. We did not observe a
transposon insertion into the predicted immunity gene cvaI,
which is not unexpected as this would likely be lethal. To
confirm that the colicin V gene cluster was sufficient for
antibiosis, we subcloned the gene cluster and repeated the
antibiosis overlay assay with E. coli containing this new
construct. The subcloned colicin V gene cluster was sufficient

to inhibit the growth of the E. coli indicator strain (zone of
inhibition 6.8 ± 1.1 mm [mean ± SD]). In an overlay assay, the
activity of HSM-C1 against E. coli is slightly less than that of a
representative E. coli isolate (ATCC 14763) that is known to
natively produce colicin V (zone of inhibition 8.9 ± 0.49 mm
[mean ± SD]).
Colicin V is known to be active against E. coli with a reported

MIC of 0.1 nM, but to the best of our knowledge, the activity of
colicin V against a broad collection of human commensal
bacteria has never been explored.14−19 The bactericidal activity
of colicin V is mediated by importing the toxin across the outer
membrane of the target bacteria by tonB type transporters and
then binding sdaC on the inner membrane, which leads to
disruption of the inner membrane potential and cell death.20

The human microbiome is known to contain E. coli and related
Enterobacteriaceae against which colicin V is known to be
active.21 We used an overlay assay to test HSM-C1 for activity
against a panel of Gram-negative and Gram-positive bacteria
from the human microbiome. Among the aerobic and anaerobic
bacteria screened, colicin V was only active against E. coli
(Figure 3). Even closely related, commensal Proteobacterial
species including species of Proteus and Klebsiella were resistant
to colicin V activity. Previous studies have characterized the
effect of narrow spectrum bacteriocins on E. coli pathogens, as
well as pathobionts like adherent invasive E. coli (AIEC), which
is associated with Crohn’s disease.19,22 The E. coli containing
the subcloned colicin V gene cluster was assayed for activity
against E. coli MS-145-7, an AIEC isolate from the colon of a
patient with Crohn’s disease.23 In overlay assays, AIEC MS-
145-7 was susceptible to E. coli expression of colicin V but not
E. coli containing an empty vector control (zone of inhibition
7.7 ± 0.53 mm [mean ± SD]).
The entire 31 kB metagenomic DNA insert including the

colicin V gene cluster in HSM-C1 is 99% identical to a
virulence plasmid found in APEC, suggesting the transfer of
virulence genes between avian E. coli reservoirs in the
environment and human associated E. coli. APEC strains are
the etiological agent of avian colibacillosis, a devastating
problem in the poultry industry and a major reason for the
use of E. coli active antibiotics in animal husbandry. General
concern has been raised about how excessive antibiotic use in
poultry may increase the rise of antibiotic resistance and
virulence in human bacterial strains.24 Studies that have looked
specifically at APEC to understand its relationship to human
pathogenic E. coli have identified shared virulence genes with

Figure 3. Spectrum of activity. E. coli expressing the colicin V gene cluster was plated on LYH-BHI agar media and overlaid with indicator strains of
20 human commensal bacteria from the four common phyla present in the human microbiome. Inhibition of the indicator strain was only observed
for E. coli strains K12 and MS145-7, a strain of adherent invasive E. coli (AIEC), both indicated in red. There was no inhibition of any strains by
E. coli carrying the empty vector.
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E. coli isolates from human urinary tract infections (uropatho-
genic E. coli, UPEC).25,26 These discoveries suggest a shared
ancestry but not a direct transmission of E. coli virulence genes
to human associated bacteria, as the genes seen in APEC and
UPEC are similar but not identical. The transfer of virulence
plasmids has been observed in a farm setting where workers
have direct, daily contact with poultry; however, the patient
associated with the metagenomic library we screened in this
study lived in an urban environment without close or extensive
contact with live poultry.27 The discovery of these virulence
genes from the microbiome of an individual living in New York
City suggests potential dissemination of these genes away from
the site of contact between humans and poultry.
A query of data from a deep sequencing study of

metagenomic DNA from 124 patient stool samples revealed
one patient sample in which genes from every portion of the
metagenomic DNA clone discovered in this study could be
identified and 9 samples where individual genes from the
metagenomic DNA clone could be identified.9 These findings
all suggest that virulence genes not only are able to enter the
human reservoir temporarily at sites of contact with environ-
mental pathogens but also can also persist and disseminate in
the collective human microbiome. Future studies will be
needed to better understand whether the presence of APEC
virulence genes in the human microbiome affects the
pathogenicity of any human microbiota.
It was not surprising that our study identified a bacteriocin

gene cluster as they are some of the most common and diverse
biosynthetic gene clusters among human microbiota.28,29 In
fact, bacteriocins are common to microbiota that inhabit almost
every niche of the human microbiome.29,30 Two studies of
human microbial biosynthetic gene clusters suggest bacteriocin
gene clusters (including ribosomally synthesized post transla-
tionally modified peptides [RIPPs]) are common in the human
microbiome with almost 5000 unique gene clusters.28,29

Despite the abundance of this biosynthetic gene family in the
human microbiome, few studies have functionally characterized
bacteriocins isolated from human microbiota. Examples of
bacteriocins (RIPPs) characterized from human microbiota
include the lantibiotics epidermin/epilancin, salivaricin, cytoly-
sin, and ruminoccin A as well as the thiopeptide lactocillin.31−34

Class II bacteriocins have been isolated from nonpathogenic
human associated E. coli strains. Functional analysis of E. coli
strains isolated from humans suggested >40% were colicino-
genic strains and that these strains may be enriched in patients
with Inflammatory Bowel Disease.35,36

Additional studies will be needed to determine whether
bacteriocin gene clusters in the human microbiome encode
functions that shape human microbial ecology and/or affect
host physiology in vivo. Functional metagenomics screening
methods are likely to facilitate the study of human microbial
bacteriocins as these gene clusters are physically small in size,
facilitating their capture and heterologous expression. There is
continued interest in the therapeutic development of
bacteriocins due to their varied mechanisms of action, diverse
spectrum of activity, and a biosynthetic scheme that is easy to
manipulate and express in host microbes.37 For example, the
narrow spectrum of activity we observed for colicin V among
commensal bacteria might allow for targeting pathobionts like
AIEC while preventing disruption of other beneficial
commensals. The high density of bacteriocin genes in the
human microbiome suggests that these antibiotics have an
important role in ecology of human-associated bacteria. The

large-scale application of functional metagenomics to eDNA
libraries derived from diverse patient samples should provide a
systematic means of identifying additional biomedically and
ecologically relevant bacteriocins encoded within the panhu-
man microbiota.

■ METHODS
A patient was recruited at Mount Sinai Hospital (New York,
NY) under IRB approved consents (#11-0716 Mount Sinai). 6
g of stool from one healthy control was resuspended in 0.9%
NaCl to a total volume of 40 mL and then centrifuged (800g, 5
min, 4 °C). The resulting pellet was resuspended in 40 mL of
0.9% NaCl and pelleted once again (3200g, 30 min, 4 °C).
Washed stool samples were resuspended in 5 mL of 0.9% NaCl.
750 μL of this sample was layered on 500 μL of Nycodenz in a
1.5 mL Eppendorf tube. After centrifugation (21 130g, 10 min,
room temperature) the top layer was removed and mixed with
500 μL of 0.9% NaCl in a 15 mL conical tube, and bacteria
were collected by centrifugation (5800g, 10 min, room
temperature). The bacterial pellet was resuspended in 8 mL
of lysis buffer (100 mM Tris-HCl, 100 mM Na EDTA, 1.5 M
NaCl, 1% (w/v) CTAB, 2% (w/v) SDS, pH 8.0) and incubated
at 70 °C for 2 h. Crude eDNA was precipitated by addition of
0.7 volumes of isopropanol, collected by centrifugation (4000g
× 30 min), washed with 70% ethanol, and then resuspended in
50 μL of TE buffer (10 mM Tris-HCl, 1 mM Na EDTA, pH
8.0). eDNA was separated by preparative agarose (0.7%
agarose) gel electrophoresis (3 h, 100 V), and high molecular
weight DNA was excised from the gel and collected by
electroelution (100 V, 2 h). Purified high molecular weight
eDNA was blunt ended (End-It; Epicentre), ligated into ScaI
digested pJWC1 cosmid vector packaged into lambda phage in
vitro (MaxPlax Packaging Extracts; Epicentre), and transfected
into E. coli EC100. Titers were determined for packaging
reaction, and the library was expanded until it contained ∼1.5
million clones. Clone colonies were selected by plating on LB
with 15 μg/mL tetracycline. Colonies were washed from the
plates and stored as concentrated glycerol stocks without
further expansion.
A scraping of the library glycerol stock was diluted in fresh

LB and plated on LB agar at an average density of 1000
colonies per 150 mm agar plate. Thirty metagenomic clone
plates were made for each indicator strain tested, and each plate
was placed at 30 °C for 5 days. E. coli EC100 and B. subtilus 168
1A1 indicator strains were grown overnight in LB (37 °C with
shaking 200 rpm) and in the morning the culture was diluted
1:1000 into sterile LB half agar cooled to 55 °C. Half agar
containing the indicator strain was then poured on top of the
metagenomic clone plates and placed at 37 °C for 24 h. Plates
were then inspected for zones of inhibition around
metagenomic clone colonies which suggest antibiotic proper-
ties. Clones that exhibited antibiotic properties were selected
and streaked again on LB, and the experiment was repeated to
confirm antibiosis. After confirmation of inhibition against
E. coli, the original library was plated again at high density
(45 000 clones per 150 mM plate) without an overlay to
determine whether the antibiotic clones were active against
other library clones. The same inhibition phenotype was
identified with 1 clone per 30 000 library clones exhibiting the
antibiotic phenotype. From these high-density library plating
experiments, 12 clones were selected for further evaluation.
Twelve active clones were selected with antibiotic properties,

and cosmid DNA was isolated (Qiagen, QIAprep Spin
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Miniprep). DNA was restriction digested using EcoRI and
BamI. After subtraction of cosmid bands, there were clear
patterns that indicated a conserved metagenomic DNA region
suggesting all 12 clones contained overlapping DNA sequences.
DNA from 1 clone was fully sequenced by PGM IonTorrent.
IonTorrent DNA reads were assembled single large contig by
Newbler which was then annotated using CloVR.38 Each of the
11 remaining clones were Sanger sequenced from the end of
the metagenomic insert and aligned to the fully assembled
metagenomic clone (MacVector) to confirm overlapping
metagenomic DNA inserts. A representative clone, which
contained all predicted virulence genes, was selected and
transposon mutagenized using the EZ Tn-5 Kan Transposon
(Epicentre). Transposon mutants were selected using kana-
maycin (50 μg/mL). 100 transposon mutants were then
selected, and the antibiosis overlay assay was repeated to look
for loss of antibiotic phenotype. Eight transposon mutants
failed to inhibit the growth of E. coli and were sent for Sanger
sequencing from the transposon insertion site. All clones were
confirmed to have interruptions in a biosynthetic gene cluster
for producing colicin V. The colicin V gene cluster was then
subcloned to confirm the activity. Forward primer 5′-catgag-
agctccattaatccagataaacaac and reverse primer 5′-cgaacgagctcta-
tcatgtcgatgacgggg were used to PCR amplify the colicin V gene
cluster. The PCR product was gel purified, digested with SacI,
blunt ended (End-It, Epibio), and ligated into ScaI digested
pJWC1 vector. Subclones were selected by plating on LB agar
with 15 μg/mL tetracycline, and cloning was confirmed by PCR
amplification of the cloned gene cluster. Subclones were then
subjected to the same antibiosis overlay assay against E. coli and
confirmed to exhibit the antibiotic phenotype. For all antibiosis
assays, E. coli with the empty pJWC1 vector was used as a
negative control to confirm no antibiotic properties in the host
E. coli.
The nonredundant gene set was downloaded for each of the

124 patient samples from the MetaHIT data set.9 The three
virulence gene clusters (Figure 2) along with each of the
surrounding metagenomic regions were individually searched
(blastN) against the nonredundant gene set for each patient
sample. Genes with 99% nucleotide identity over the full gene
length were identified and recorded for each patient sample. In
one patient sample, there was at least one gene present in that
sample from all three virulence gene clusters and each of the
metagenomic regions around the virulence gene clusters.
All indicator bacteria were ordered from BEI resources. The

colicin V producing E. coli strain 14763 was obtained from
ATCC. Bacteria were assayed by overlay on top of E. coli
expressing the colicin V gene cluster in the same method as the
original library screening. All bacteria were grown in LY-BHI
media [brain−heart infusion medium supplemented with 0.5%
yeast extract (Difco), 5 mg/L hemin (Sigma), 1 mg/mL
cellobiose (Sigma), 1 mg/mL maltose (Sigma), 0.5 mg/mL
cysteine (Sigma)]. E. coli expressing colicin V was plated on LY-
BHI agar, and the indicator strain was inoculated into LY-BHI
half agar. Bacteria were grown anaerobically when indicated,
and in those cases, the E. coli was inoculated onto the LY-BHI
agar aerobically and then placed into the anaerobic chamber to
equilibrate for 4 h prior to the anaerobic indicator strain
overlay. Plate images were analyzed with ImageJ, and zones of
inhibition were averaged from 5 measurements in triplicate
experiments.
50 mL cultures of metagenomic clones with antibiotic

activity and E. coli with the empty pJWC vector (negative

control) were grown at 30 °C with shaking at 200 rpm for 5
days. The culture broth was centrifuged (200g × 10 min), and
the supernatant then passed through a 0.22 μM filter
(Millipore). 100 μL of sterile culture broth from either the
colicin V producing clone or the negative control were added to
wells of a 96 well microplate (Grenier, clear bottom) along with
50 μL of fresh LB media. To this was added a 1/10 000 dilution
of an overnight culture of the E. coli indicator strain. OD600
was measured at baseline and then at 3 h intervals to 12 h. At
12 h, there was growth inhibition in wells with the colicin V
sterile supernatant. To determine whether antibiosis was due to
an organically extractable molecule, 50 mL of culture broth
from the active metagenomic clones and the negative control
was extracted 1:1 with ethyl acetate and the organic layer was
dried by vacuum centrifugation. Organic extracts were then
assayed at 10 and 100 μg/mL final concentrations for antibiotic
properties in the same growth inhibition assay as well as by
plating on a lawn of indicator E. coli. In both experiments, there
were no observed antibiotic effects of the crude organic
extracts.
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