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Introduction

In the complex web of interactions that comprises life on 
earth, small molecule natural products play crucial and 
ubiquitous roles in governing relations within and between 
species [13, 65, 72]. While humans have used plant extracts 
for therapeutic purposes for millennia [47, 72], it was Alex-
ander Fleming’s isolation of the antibiotic, penicillin, from 
the Penicillium rubens fungus in 1929 that marked the 
beginning of a new age of natural product-driven medicine 
[34]. Since Fleming’s discovery, natural products derived 
from environmental microbes have been a major source 
of lead structures in the development of clinically useful 
therapeutics—representing more than 60  % of the FDA-
approved anti-infective and anti-tumorigenic agents cur-
rently on the market [72]. Easily cultured environmental 
bacteria have been the most productive source of natural 
products. However, despite decades of historical productiv-
ity, pharmaceutical companies largely deemphasized natu-
ral product discovery at the end of the past century due to 
high rediscovery rates from their continued examination of 
cultured bacteria.

The large-scale sequencing of bacterial genomic DNA 
over the past 2–3 decades has led to the observation that 
previous, culture-based natural product discovery programs 
have likely failed to access the vast majority of bacterial 
biosynthetic diversity present in the environment. These 
studies suggest that while a single gram of soil can contain 
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as many as 10,000 unique bacterial species [81, 91], 99 % 
of these have not been cultivated in the laboratory, and in 
the small fraction of cultured species [38, 78, 88, 89], large 
numbers of natural product biosynthetic gene clusters are 
not expressed in pure culture [2, 5]. A number of differ-
ent approaches are now being explored to address these 
problems and gain access to a larger fraction of nature’s 
true biosynthetic diversity. These efforts include such 
approaches as the re-exploration of ancestral culture collec-
tions using next generation sequencing methods, attempts 
to culture a larger fraction of environmental bacteria in the 
laboratory, and the development of culture-independent 
methods for accessing natural products from environmen-
tal samples [68]. This review is intended to provide a brief 
history of culture-independent approaches for the discov-
ery of novel natural products from soil microbiomes and 
an overview of recent efforts to develop more systematic 
approaches for accessing biologically active natural prod-
ucts from soil environments.

A culture‑independent approach for natural 
product discovery

The uncultured bacterial majority undoubtedly produces 
small molecules with therapeutic potential; however, there 
are currently no general strategies for culturing them [78]. 
Alternatively, DNA extracted directly from environmental 
samples (eDNA) can be cloned and accessibly stored in a 
host organism as a living genetic library. Subsequently, the 
secondary metabolite-encoding gene clusters contained in 
this library can be heterologously expressed to access the 
natural products encoded within the environmental bac-
terial genomes. This general approach has been termed 
“metagenomics” and its application to the study of bacte-
rial secondary metabolism is particularly appealing in light 
of the fact that all of the genes required for natural prod-
uct biosynthesis are typically tightly clustered on bacterial 
chromosomes [42]. Approaches used to harvest small mol-
ecules from metagenomic libraries (Fig. 1a) can be divided 
into two general categories: (1) functional screening, which 
relies on the random, unbiased screening of individual 
eDNA clones in phenotypic assays to identify bioactive 
metabolite producing clones; and (2) homology screening, 
which relies on DNA sequence similarity to identify clones 
containing a specific gene of interest. These clones are then 
heterologously expressed to generate molecules of interest.

Direct functional metagenomic screening efforts 
and their limitations

Early efforts to mine metagenomes for the purpose of natu-
ral product discovery began with the construction of eDNA 

cosmid libraries in E. coli, and, in at least one instance, 
Streptomyces, followed by visual or chromatographic 
screening of these libraries for easily observable pheno-
types commonly associated with natural product expression 
from a clone (e.g., color, antibiosis, HPLC peak) [10–12, 
22, 31, 64, 82, 83, 94]. While these simple screens yielded 
some interesting metabolites (Fig.  2, 1–6), they were less 
productive than originally hoped. In retrospect, three eas-
ily identifiable issues have likely limited the success of 
functional metagenomic studies: (1) limitations in the het-
erologous expression capabilities of the model host organ-
isms currently in use, (2) the insert size of the cosmid based 
libraries that have dominated the field to date, and (3) the 
rarity of secondary metabolism biosynthetic machinery in 
prokaryotic genomes [5, 24, 37, 45, 68, 97]. Although none 
of these bottlenecks to functional metagenomics have been 
cleared outright, a number of advances have been made in 
recent years.

New model hosts for heterologous expression. Model 
strains used to date were largely identified decades ago 
for their ability to overproduce a single specific metabo-
lite as opposed to the ability to induce and support the 
production of diverse natural product biosynthesis at 
levels suitable for initial natural product discovery. For 
a metagenomic-based approach to drug discovery to 
be successful, new model hosts must be identified that 
can transcriptionally activate and produce molecules 
encoded by a more diverse set of clusters than is cur-
rently accessible. More recently, several studies involv-
ing both eDNA and pure culture DNA have employed a 
broad range of genetically tractable Actinobacterial and 
Proteobacterial hosts for the heterologous expression 
of biosynthetic clusters [1, 6, 8, 14, 16, 23, 40, 46, 48, 
49, 53, 56, 74, 79]. These studies were made possible by 
the use of specially constructed broad-host-range shut-
tle vectors, such as pJWC1, pTARa or pMBD14, which 
allow effective eDNA clone shuttling between such tax-
onomically diverse organisms. While efforts to improve 
broad-host-range cloning methods continue [97], direct 
host engineering also provides a promising direction for 
the heterologous expression of natural products from 
metagenomes. For heterologous expression experiments, 
many problems are thought to arise from issues associ-
ated with the transcription and translation of exogenous 
DNA by the host. For example, E. coli contains only 
half of the RNA polymerase sigma factors contained in 
Streptomyces and has been shown to express a signifi-
cantly lower number of metagenomic genes in compari-
son [36, 97]. To this end, the overexpression of one of 
these missing sigma factors, σ54, in E. coli facilitated the 
heterologous expression of an otherwise silent polyke-
tide biosynthetic pathway [87]. These studies suggest 
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Fig. 1   Basic metagenome-driven drug discovery and the develop-
ment of a sequence-based pipeline. a Metagenomic samples are col-
lected from ecologically and geographically diverse environments, 
such as soil microbiomes. DNA from the microorganisms that inhabit 
these environments is then extracted for further analysis. Once this 
environmental DNA (eDNA) is cloned and ligated into a shuttle vec-
tor, it is then transformed into a host cell, creating a living library of 
organisms housing the eDNA. These metagenomic libraries can then 
be functionally screened by searching for phenotypes produced by 
eDNA-encoded natural products or the eDNA can be directly exam-
ined using sequence-based screening methods such as PCR. Clones 
of interest are recovered from metagenomic libraries and the biosyn-
thetic pathways they contain are sequenced and annotated. The natu-

ral product encoding pathways of interest are assembled in full and 
activated through a variety of methods. The activated gene clusters 
are heterologously expressed, and the resulting natural products are 
isolated and characterized. b Alternatively, crude eDNA from various 
environmental samples can be screened by PCR to construct a profile 
of the biosynthetic pathways they contain. The sequences resulting 
from this screen are phylogenetically organized so as to make predic-
tions of the chemical structures encoded by the greater biosynthetic 
pathways to which they belong. Samples predicted to contain novel 
or diverse biosynthetic pathways are prioritized for library construc-
tion and subsequent clone recovery, assembly, and heterologous 
expression
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that a combination of both better host selection and host 
engineering will likely be required to yield truly useful 
heterologous expression hosts.
Improving library construction methods. Advancements 
in eDNA cloning methods should dramatically enhance 
metagenomic screening efforts by facilitating the capture 
of a larger fraction of complete gene clusters on individ-
ual fragments of eDNA. The most efficient eDNA clon-
ing methods are currently limited to capturing ~40 kb of 
eDNA, thus not allowing for the cloning of the major-
ity of gene clusters, which can exceed 150 kb, on a sin-
gle clone. Ideally, a metagenomic library would contain 
large-insert (>100  kb) clones that redundantly cover 
the total genetic material of an environmental sample. 
While to date such large-insert metagenomic libraries 
suitable for molecule discover do not exist, multiple dif-
ferent protocols for metagenomic library construction 

have been developed recently, each resulting in different 
average insert-size, total library size, and efficiency of 
creation, making each differently suited for the various 
methods of metagenomic screening [8, 42, 62, 99, 103]. 
Furthermore, a number of methods have been described 
to improve different aspects of library construction. New 
technologies such as synchronous coefficient of drag 
alteration (SCODA) [30, 76], indirect DNA extraction 
through microbial cell separation [62], and formamide 
treatment [62] result in the extraction of high molecu-
lar weight DNA and eliminate environmental inhibitors, 
helping to facilitate the transfer of eDNA to metagen-
omic libraries [30, 76].
Selective library enrichment by functional complemen-
tation. As only a small fraction of clones in a metagen-
omic library will contain biosynthetic clusters, the utility 
of libraries would be greatly improved by the develop-

Fig. 2   Examples of microbial natural products discovered and stud-
ied through functional and sequence-based metagenomics. (1) vio-
lacein, (2) turbomycin A, (3) palmitoylputrescine, (4) a long-chain 
fatty acid enol ester compound, (5) long-chain N-acyl tryptophan, 
(6) long-chain N-acyl arginine; (7) vibrioferrin; (8) enterobactin; (9) 
and (10) sulfo-glycopeptide compounds from Owen et al. [75], (11) 

lazarimide A, (12) clarepoxin D, (13) landepoxin A, (14) BE54017, 
(15) erdasporine A, (16) borregomycin A, (17) hydroxysporine, (18) 
reductasporine; (19) arimetamycin A, (20) tetarimycin A, (21) arixan-
thomycin A, (22) calixanthomycin A; (23) UT-X26, (24) AZ154, (25) 
broystatin, (26) onnamide A, (27) calyculin A
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ment of methods to selectively enrich for clones with 
functionally active gene clusters. It has been estimated 
that secondary metabolite biosynthesis comprises less 
than 2 % of many bacterial genomes [37]. As a result, 
screening a complex metagenome for natural product 
biosynthesis poses a difficult challenge given the small 
fraction of clones that are likely to contain biosynthetic 
genes of interest. A potential approach to address this 
rarity issue is selectively enriching metagenomic librar-
ies for secondary metabolite biosynthetic machinery. 
This has been illustrated by the functional screening 
of eDNA clones for phosphopantetheine transferase 
(PPTase) genes using a PPTase deficient E. coli strain 
[19]. PPTases are responsible for activating nonribo-
somal peptide synthetase (NRPS) and polyketide syn-
thase (PKS) modules by post-translational attachment 
of phosphopantetheine (PPT) and are required for the 
function of NRPS and PKS gene clusters [60], including 
those which produce the secondary metabolite iron-che-
lators, siderophores, required for bacterial growth under 
iron limiting conditions [66] (Fig.  2, 7–8). Like some 
NRPS and PKS clusters, some siderophore-producing 
gene clusters contain their own PPTase-encoding genes, 
meaning that PPTase-deficient E. coli will selectively 
grow in low-iron conditions only if they harbor eDNA 
clones that can functionally complement the PPTase 
activity. While not a universal solution to the rarity of 
biosynthetic clusters, these experiments illustrate one 
method to capitalize on the unique functions of natural 
products to enrich for their biosynthetic machinery.

Sequence‑based metagenomic discovery efforts 
in natural product discovery

Sequence-based metagenomics differs from functional 
metagenomics in that it does not require heterologous 
expression to identify metagenomic clones of interest. 
Instead, this approach circumvents the challenges asso-
ciated with heterologous expression by identifying gene 
clusters of interest through sequence analysis. The target 
pathways can be subsequently explored in heterologous 
expression studies to generate molecules. Although shot-
gun-sequencing approaches have been useful for guiding 
the identification of biosynthetic gene clusters in individual 
genomes [5] and small, endosymbiont metagenomes [28, 
51], the immense size and complexity of soil metagenomes 
has limited their application for such samples. It has proved 
extraordinarily challenging to sequence deep enough into 
soil microbiomes, which can contain up to 104−5 unique 
species, to generate sequencing data that is broadly use-
ful for natural products gene cluster discovery [78, 81, 88, 
91]. To parse this surfeit of genomic sequence in a cost 

effective and bioinformatically manageable manner, a more 
targeted approach is required. As a result, most sequence-
based metagenomic discovery efforts using soil microbi-
omes have used degenerate PCR primers to amplify con-
served biosynthetic genes of interest followed by amplicon 
sequencing as a means of identifying clones that contain 
genes and, correspondingly, gene clusters of interest. In a 
direct comparison of biosynthetic domain detection from 
metagenomic samples, the PCR-based sequence targeting 
approach was shown to be 10–100 times more sensitive 
than shotgun sequencing in identifying unique sequences 
[100].

Initial sequence‑based approaches targeting 
biosynthetic genes

The first study to explore a soil microbiome for natural 
product biosynthetic diversity using a sequence-based 
metagenomic approach was carried out by Seow et  al. in 
1997, even before the term “metagenome” was coined 
[42]. In this study, degenerate primers were designed to 
target conserved regions of the ketoacyl synthase-β (KS-
β) and chain-length-factor (CLF) genes found in all type 
II PKS biosynthetic gene clusters. Type II PKS gene frag-
ments amplified by PCR from crude eDNA were cloned 
to yield hybrid type II PKS gene cassettes. The resulting 
constructs were used in complement with type II PKS gene 
clusters from cultured bacteria to generate new octaketide 
and decaketide structures. This work was arguably the first 
study to show that gene clusters from the soil “multige-
nome” could be used to potentially generate novel second-
ary metabolites [84]. In subsequent studies, primers target-
ing these and other conserved biosynthetic enzymes have 
been used to interrogate metagenomic libraries instead of 
crude eDNA. This allowed for the recovery of complete 
gene clusters in place of isolated biosynthetic genes. In 
one such study, degenerate primers targeting the isonitrile 
biosynthetic enzyme family, isnA, and oxidative coupling 
enzyme, OxyC, from glycopeptide biosynthesis, were used 
to probe eDNA libraries [9]. This led to the identification 
of biosynthetic gene clusters predicted to encode for either 
novel isonitrile- or glycopeptide-containing natural prod-
ucts, respectively. A small collection of isonitrile-func-
tionalized metabolites was generated through heterologous 
expression of the isnA-containing gene clusters in E. coli 
[9]. In the case of the glycopeptide gene clusters, the sul-
fotransferases encoded in one group of eDNA gene clusters 
from a metagenomic sample were used in vitro to modify 
a teicoplanin aglycone scaffold to generate a novel fam-
ily of polysulfate glycopeptides [4]. This in vitro approach 
allowed for the generation of novel glycopeptide congeners 
using biosynthetic diversity cloned from the soil metagen-
ome without the heterologous expression of the complete 



134	 J Ind Microbiol Biotechnol (2016) 43:129–141

1 3

eDNA-derived glycopeptide clusters. The identification 
of individual biocatalysts, such as sulfotransferases, ester-
ases [102], lipases [96], and β-galactosidases [95] from 
metagenomic samples through either sequence- or func-
tional-based screening provides an independent strategy for 
the development of new natural products without requiring 
the identification, assembly, or activation of complete bio-
synthetic pathways [46, 92].

While early sequence-based metagenomic studies illus-
trated the potential of this approach to unlock the biosyn-
thetic diversity that has remained hidden in soil microbi-
omes, it still falls short of being a truly systematic method 
for screening inherently complex metagenomes [3, 9]. 
Described below are a number of recent advances relevant 
to the development of a more efficient, sequence-based 
metagenomic pipeline (Fig.  1b). When utilized together, 
these methods have the potential to create a higher through-
put approach to identifying novel natural products from 
previously unexplored biosynthetic clusters in diverse 
microbiomes.

Developing tools for barcoding PKS and NRPS gene 
clusters in microbiomes

Early applications of sequence-based metagenomic meth-
ods used primers tailored to genes conserved among rela-
tively small biosynthetic families of natural products. A 
number of recent studies have focused on expanding these 
efforts to look for the presence of a broader range of con-
served natural product biosynthetic domains, with a major 
focus on domains found in PKS and NRPS biosynthetic 
gene clusters [20, 21, 79, 80]. Degenerate primers target-
ing these common biosynthesis domains are intended to 
generate complex mixtures of PCR amplicons consisting of 
domains from hundreds, if not thousands, of gene clusters 
present in individual environmental samples or metagen-
omic libraries. Individual next-generation sequencing reads 
derived from such PCR amplicons have been termed Natu-
ral Product Sequence Tags (NPSTs). The scale of the data 
generated in these studies has necessitated the development 
of new bioinformatic platforms that can interrogate and 
organize NPST datasets. While a number of bioinformat-
ics tools have been developed to mine complete sequenced 
genomes for secondary metabolite biosynthetic clusters 
(e.g., ClustScan [86] and antiSMASH [7, 67]) these pro-
grams generally rely on much larger DNA fragment inputs 
than are available from metagenomic sequencing efforts.

In response to the need for the tools to analyze very 
large NPST datasets, programs such as eSNaPD (Envi-
ronmental Surveyor of Natural Product Diversity) [80] 
and NaPDoS (Natural Product Domain Search) [104] 
were developed. These software packages compare 
NPSTs to reference databases of sequences obtained from 

characterized biosynthetic gene clusters to predict gene 
cluster content and potential chemical output of an environ-
mental sample or library. This process is similar to recon-
structing the phylogeny of entire organisms within an envi-
ronment using 16S rRNA sequences [75]. The phylogenetic 
organization of biosynthetic gene clusters offers two routes 
for environmental natural product mining. Congeners of 
characterized natural products can be mined by pursuing 
gene clusters associated with NPSTs that group closely 
with the biosynthetic domains encoding for known natural 
products. Conversely, potentially novel natural products 
can be pursued by focusing on gene clusters associated 
with NPSTs that do not group closely with any previously 
characterized sequences in these families [18, 52, 74]. Such 
close and distant relative searches are computationally 
simple; however, once the appropriate sequence similarity 
cutoffs are defined empirically, their output has proven to 
be a robust predictor of pathway gene content and chemi-
cal output [75]. In addition to its NPST analysis function, 
eSNaPD organizes data to allow for the archival storage 
and comparative analysis of NPST datasets from diverse 
environments. These methods for interrogating biosyn-
thetic diversity in environmental samples and metagenomic 
libraries are low cost and need little computational power, 
as they only require the sequencing and subsequent com-
putational comparison of small PCR amplicons instead of 
complete genomes.

Surveying environments for novel biosynthetic clusters

With the ability to cost effectively analyze the biosyn-
thetic diversity present in a metagenome using a NPST 
approach, it has been possible to conduct larger scale 
studies of secondary metabolism in the environment. This 
involves comparative analysis of multiple environmental 
samples with the dual goals of both studying the differen-
tial distribution of biosynthetic gene clusters in the global 
microbiome and the identification of specific environments 
with gene clusters of interest that might serve as starting 
points for metagenomic library construction efforts. Work 
in marine environments has constructed geographic sec-
ondary metabolite surveys by screening representative 
collections of marine organism genomes from different 
locations using ketosynthase (KS) and adenylation domain-
derived (AD) degenerate primers to detect the presence of 
PKS and NRPS biosynthetic machinery in these organisms 
[29, 39]. These studies indicate that biosynthetic gene clus-
ter families are partitioned across geographically distinct 
marine environments [29]. The geographic mapping of sec-
ondary metabolism has also been applied to diverse soils 
from around the world using a metagenomic approach to 
provide more comprehensive profiles of natural product 
biosynthetic gene clusters in diverse environments [20, 21, 
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79, 80]. These survey results were similar to those seen in 
marine culture collections, indicating that sequence simi-
larity occurs in only the most similar of soil types and that 
geographically and/or ecologically dissimilar environments 
contain little overlap in their natural product biosynthetic 
gene clusters [21, 79]. Furthermore, by correlating environ-
ment type with secondary metabolite production profiles, 
specific soil types could be deemed as either rich or poor in 
NRPS and PKS biosynthetic diversity [20]. Expanding the 
profiling of biosynthetic diversity present in environmen-
tal samples should allow for more strategic decisions to be 
made as to which metagenomic samples are probed more in 
depth for gene clusters that either make desired congeners 
of known molecules or potentially novel families of sec-
ondary metabolites.

Utilizing NPST data to recover natural product gene 
clusters from metagenomic libraries

The NPST approach has also proved to be a productive 
method for guiding the recovery of specific gene clus-
ters captured in large soil DNA libraries. To do this, large 
metagenomic libraries are arrayed as manageably sized 
subpools and screened with collections of primers contain-
ing unique barcodes that are used to track NPSTs corre-
sponding to gene clusters of interest to their location of ori-
gin within the arrayed library. Natural product gene clusters 
of interest can then be recovered from the specific subpool 
of the library, sequenced, and analyzed in heterologous 
expression studies. This concept was illustrated using a 
mulit-million membered metagenomic library constructed 
from eDNA isolated from Arizona desert soil [75]. The 
screen utilized degenerate NRPS- and KS-targeting prim-
ers to identified tags belonging to gene clusters predicted 
to encode congeners of a variety of antibiotics and anti-
cancer agents. One gene cluster, predicted to encode for a 
glycopeptide-like antibiotic, was recovered in full and het-
erologously expressed in S. toyocaensis:ΔStaL, a known 
glycopeptide producer, to produce three novel glycopeptide 
congeners (Fig. 2, 9, 10). This work demonstrated the util-
ity of NPST screening methods in the identification and 
characterization of diverse natural product biosynthetic 
clusters captured in soil metagenomic libraries.

Reassembly, activation, and expression of recovered 
biosynthetic clusters

The ultimate goal of sequence-based metagenomics is the 
production and characterization of novel natural products 
through heterologous expression in a model cultured bac-
terial host. A number of barriers however remain to the 
routine application of this process. Methods designed to 
address common barriers standing between gene cluster 

recovery from metagenomic cosmid libraries and natural 
product heterologous expression are discussed here.

Reassembly of clusters

Because of the large size of many biosynthetic gene clus-
ters, often clusters of interest cannot be captured on a single 
cosmid clone and therefore must be recovered on a series of 
overlapping cosmid clones. To facilitate the study of large 
gene clusters in a model cultured heterologous expression 
host, overlapping soil DNA cosmid clones comprising a 
complete biosynthetic pathway are reassembled into a bac-
terial artificial chromosome (BAC) using transformation-
associated recombination (TAR). In a typical TAR reac-
tion, linearized eDNA cosmids containing components of a 
complete biosynthetic gene cluster are co-transformed into 
yeast with a linearized E. coli:yeast:Streptomyces shuttle 
capture vector (e.g., pTARa) containing pathway-specific 
homology arms [32, 49, 101]. Once in yeast, the overlap-
ping cosmids assemble into a continuous fragment of DNA 
and the shuttle vector captures this target DNA sequence 
through homologous recombination to yield a BAC con-
taining the reassembled biosynthetic cluster [56]. Reassem-
bled gene clusters can then be transferred from yeast into 
genetically tractable model bacterial strains for heterolo-
gous expression [1, 6, 8, 14, 23, 40, 46, 48, 49, 56].

Activation of clusters

Although some eDNA derived gene clusters will imme-
diately lead to the production of the metabolite(s) they 
encode upon introduction into a heterologous host, most 
remain silent. The activation of silent biosynthetic gene 
clusters remains a significant challenge for almost all 
microbial natural product discovery programs and the 
development of methods to overcome this challenge is a 
very active area of research. Several approaches have been 
successful in the activation of otherwise silent gene clusters 
in native host organisms, such as the simulation of environ-
mental conditions [33], co-culturing [25], and the use of 
histone deacetylase (HDAC) inhibitors [70]. To the best of 
our knowledge, similar methods have not yet been widely 
examined as potential mechanisms for inducing eDNA 
derived gene cluster expression in heterologous hosts.

The exploitation of genetic regulatory elements has been 
used to activate silent gene clusters in both native and het-
erologous host organisms. Strong promoters, such as the 
ermE* erythromycin resistance encoding promoter, can be 
placed in front of positive regulatory elements [50, 61, 73], 
or individual biosynthetic genes themselves [73] to con-
stitutively activate biosynthetic pathways, resulting in the 
production of secondary metabolites. This method has been 
used to produce 6-epi-alteramides, candicidins, antimycins 
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[73] and the 51-membered macrolide, stambomycin [61] in 
native hosts and the eDNA-encoded tetarimycin A [50] in 
a heterologous host. A number of studies have shown com-
plete refactoring of biosynthetic pathways as a means of 
accessing metabolites from silent gene clusters, resulting in 
the heterologous expression of spectinabilin [85] and sev-
eral new polycyclic tetramate macrolactams [63]. Recently, 
yeast homologous recombination was employed to expe-
dite multiplex promoter exchange in a silent eDNA-derived 
gene cluster, resulting in the production of the indolotryp-
toline antiproliferative agents, lazarimides A and B (Fig. 2, 
11) [69]. In another example, every gene in the eDNA-
derived erd gene cluster was cloned under the control of an 
inducible promoter to yield the novel carboxy-indolocarba-
zole containing tryptophan dimer erdasporine [17]. To date, 
complete gene cluster refactoring approaches have yet to be 
extensively applied to soil metagenomic discovery efforts.

Sequence‑based metagenomic natural product 
mining in action

A growing number of natural products have been identi-
fied from soil metagenomes using sequence-based discov-
ery efforts. These studies can largely be divided into two 
groups. One effort is focused on NPST’s that are closely 
related to known sequences in an effort to identify addi-
tional congeners of a known natural product or natural 
product class. The second effort is focused on NPST’s that 
are phylogenetically distinct from any known sequence in 
the target gene family in an effort to identify new structural 
classes of natural products. Examples of natural products 
arising from our own research using each approach are 
highlighted here.

From the assessment of biosynthetic diversity to the 
characterization of novel natural products

Epoxyketone protease inhibitors (EPIs) are mixed 
PKS:NRPS-derived natural products that inhibit the human 
20S proteasome, proving cytotoxic through the accumu-
lation of poly-ubiquitinated proteins in the cell [58, 59]. 
While no natural EPIs have progressed through clinical tri-
als, synthetic EPI analogues have been successfully used 
to treat multiple myelomas [58, 59]. Their proven clini-
cal track record, yet limited characterized natural chemi-
cal diversity, made them appealing targets for sequence 
guided metagenomic discovery efforts. As they are partially 
derived from PKS biosynthetic machinery, gene clusters 
encoding EPIs can be identified by comparing KS-domain 
sequence tags to the KS domains from known epoxyketone 
biosynthetic gene clusters. To identify the distribution of 
EPI-encoding clusters in the environment, the sequences of 

the reference KS domains were compared with the results 
from a screen of 185 metagenomic samples from around 
the globe, using bar-coded, degenerate KS-derived prim-
ers [74]. 99 unique EPI-like sequences that grouped into 
six distinct clades were identified across these metagen-
omic samples. None of the 99 EPI relevant sequence tags 
were found in any whole genome sequences in publically 
available databases. Eleven potential EPI gene clusters 
were recovered from soil eDNA libraries. Characteriza-
tion of these full gene clusters indicated that nine of them 
were predicted to encode EPIs. Two clusters were cho-
sen for heterologous expression studies based on a desire 
to both expand the congener diversity of known EPIs and 
to identify novel EPI subclasses. These two clusters were 
reassembled (as necessary) using TAR and shuttled into 
Streptomcyes albus for heterologous expression studies. 
This led to the characterization of seven novel EPI natural 
products: clarepoxins A-E (Fig. 2, 12) and landepoxins A 
and B (Fig. 2, 13).

Targeted approaches to recovering tryptophan dimers 
from the environment

Natural products that arise from the dimerization of tryp-
tophan (i.e., tryptophan dimers, TDs) exhibit potent anti-
cancer, antibacterial, and antifungal activity, making 
them appealing targets for sequence based mining efforts 
[71]. Early metagenomic discovery efforts focused on the 
screening of archived eDNA libraries for TD gene clus-
ters using degenerate primers based on an alignment of 
chromopyrrolic acid synthase (CPAS) genes, which encode 
the enzymes involved in the dimerization of oxytryptophan 
[15, 17]. These experiments resulted in the discovery of a 
number of TD gene clusters and the characterization of both 
known [the antitumor molecule BE-54017 [14] (Fig.  2, 
14) and novel TDs (e.g., erdasporine [17], borregomycins 
[15]) (Fig.  2, 15–16). While these efforts identified novel 
TD structures, the TD core upon which each structure was 
based had been reported previously. In an effort to expand 
the scope of our search for new TD structures, crude eDNA 
extracts from geographically diverse United States soils 
were screened using bar-coded degenerate primers target-
ing CPAS genes. To identify metagenomes with the poten-
tial to encode for new TD core structures, these data were 
searched for unique sequence tags that did not fall into any 
existing CPAS clades [18]. A soil sample from the Sonoran 
Desert was identified as containing two CPAS tags that did 
not match any previously characterized TD biosynthetic 
gene clusters. One of these eDNA-derived genes fell into 
the same clade as a known family of TD CPAS’s while the 
other did not resemble any existing CPAS family, suggest-
ing the cluster it arose from might encode a metabolite rep-
resenting a novel class of TD structures. The soil of interest 
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was expanded into a full metagenomic library and the com-
plete gene clusters containing the identified sequences were 
recovered. The first cluster was heterologously expressed to 
produce hydroxysporine (Fig. 2, 17): a pyrrolinone indolo-
carbazole core containing TD that had been reported as a 
synthetic compound but never seen in nature. The second 
cluster, which was associated with a phylogenetically novel 
CPAS sequence tag, encoded the new TD, reductasporine 
(Fig. 2, 18), which contains a never before seen pyrrolin-
ium indolocarbazole core thus supporting the premise that 
“outlier” sequence tags have a high potential of being asso-
ciated with functionally novel gene clusters. The targeting 
of phylogenetically unique sequence tags as means of iden-
tifying gene clusters that encode structurally novel classes 
of natural products has also been explored using KSβ genes 
from type II PKS biosynthesis. This work has led to the 
identification of a number of natural products with either 
new or rarely seen ring systems (Fig.  2, 19–24) [31, 53, 
54, 57], further illustrating the utility of targeted screens 
in conjunction with a metagenomic natural product-mining 
pipeline to discover diverse new secondary metabolites.

The application of sequence‑based metagenomic 
natural product discovery to other environments

The utility of a sequence-based metagenomic pipeline for 
natural product discovery is not limited to soil microbi-
omes. Elements of this method have been utilized to find 
and elucidate biosynthetic gene clusters from marine envi-
ronments that encode for previously known therapeutically 
relevant molecules that have not been natively expressed 
or synthesized with sufficient yields for practical util-
ity [90]. Metagenomic analyses of the symbiotic bacteria 
found associated with organisms like marine sponges and 
tunicates have led to the discovery and/or further charac-
terization of diverse metabolites, such as the antitumor pol-
yketides, bryostatins [26, 27, 43, 77, 90] (Fig. 2, 25), onna-
mide (Fig.  2, 26) [44, 98], and polytheonamides [35, 41, 
98]. In the case of the cytotoxic natural product calyculin A 
(Fig. 1, 27), it took a targeted sequence-based metagenomic 
approach to identify the symbiotic organism and associated 
biosynthetic gene cluster responsible for its production [93] 
nearly three decades after its initial discovery from extracts 
of the marine sponge Discodermia calyx [55]. Because 
the structure of calyculin A suggested that its assembly 
required both NRPS and PKS machinery, metagenomic 
samples were collected from D. calyx and screened using 
both KS- and AD-derived degenerate primers to generate 
sequence tags that were phylogenetically organized and 
predicted to encode for calyculin A [93].

Conclusion

Metagenomic screening approaches offer an alternative 
method for natural products discovery that has the poten-
tial to unlock previously unexplored biosynthetic diver-
sity. While there remains much potential for its improve-
ment, the examples outlined above show that this general 
approach has now developed to the point where it can be 
used to routinely recover previously unstudied gene clus-
ters and functionally access novel bioactive secondary 
metabolites from diverse soil metagenomes.
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