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In this study, we compare biosynthetic gene richness and diversity
of 96 soil microbiomes from diverse environments found through-
out the southwestern and northeastern regions of the United
States. The 454-pyroseqencing of nonribosomal peptide adenyla-
tion (AD) and polyketide ketosynthase (KS) domain fragments
amplified from these microbiomes provide a means to evaluate
the variation of secondary metabolite biosynthetic diversity in
different soil environments. Through soil composition and AD- and
KS-amplicon richness analysis, we identify soil types with elevated
biosynthetic potential. In general, arid soils show the richest
observed biosynthetic diversity, whereas brackish sediments and
pine forest soils show the least. By mapping individual environ-
mental amplicon sequences to sequences derived from function-
ally characterized biosynthetic gene clusters, we identified
conserved soil type–specific secondary metabolome enrichment
patterns despite significant sample-to-sample sequence variation.
These data are used to create chemical biogeographic distribution
maps for biomedically valuable families of natural products in the
environment that should prove useful for directing the discovery
of bioactive natural products in the future.

metagenomics | antibiotics | bioprospecting | eDNA

Molecular phylogenetic analyses suggest that soils can con-
tain thousands of unique bacterial species per gram (1, 2),

yet only a small fraction of these bacteria has been cultured and
studied for their ability to produce bioactive small molecules.
Furthermore, this cultured minority of soil bacteria are collec-
tively believed to contain a large number of silent biosynthetic
gene clusters that have never been examined for their ability to
produce bioactive secondary metabolites (3, 4). Based on these
observations and the historical success of bacterial natural
products in demonstrating clinically and industrially important
bioactivities (5, 6), environmental bacteria are likely to be a rich
reservoir of as yet uncharacterized biologically active small
molecules (7). The extension of molecular phylogenetic-type
analyses to biosynthesis gene diversity in the environment should
provide a better understanding of the richness of this hidden
biosynthetic reservoir and also help to guide the discovery of
additional novel bioactive natural products in the future (8, 9).
Nonribosomal peptides (NRPs) and polyketides (PKs) are two

of the largest families of bioactive microbial metabolites, ac-
counting for most of the antibiotic, antifungal, anticancer, and
immunosuppressant compounds that have been characterized
from cultured bacteria to date (5). Although NRPS and PKS
biosynthesis is responsible for producing all biomedically rele-
vant natural products, it leads to many of the metabolites used in
the clinic including penicillin, vancomycin, rapamycin, erythro-
mycin, rifamycin, and many others. NRP and PK biosynthesis
shares a core biosynthetic logic (10, 11). In both cases, molecules
are synthesized by large modular megasynth(et)ase enzymes in
an assembly line fashion in which individual modules are re-
sponsible for the incorporation of either one acyl-CoA or amino
acid building block into the growing metabolite. A minimal NRP
module consists of an adenylation (AD) domain for selecting
incoming amino acids, a condensation (C) domain for condensing
an incoming building block with the peptidyl intermediate from
the previous module, and a peptidepeptidyl carrier protein (PCP)

domain for carrying the growing polypeptide. Similarly, a mini-
mal PK module consists of an acyltransferase (AT) domain for
selecting incoming acyl-CoAs, a ketosynthase (KS) domain for
condensing the new building block with the acyl intermediate
from the previous module, and an acyl carrier protein (ACP)
domain for carrying the growing polyketide (Fig. 1A). The re-
petitive use of conserved domains in these common biosynthetic
systems provides an entry point for a large-scale molecular
phylogenetic-type analysis of secondary metabolism in the envi-
ronment using domain-specific, degenerate primer-based PCR
and next-generation sequencing (7, 9, 12).
In this study, we surveyed NRP and PK richness and diversity

in 96 distinct soil microbiomes through 454 pyrosequencing of
AD and KS domain fragments amplified from DNA extracted
directly from these soils [environmental DNA (eDNA)]. AD and
KS amplicon diversity was then used to compare and contrast
the biosynthetic potential of geographically distinct soils with a
variety of soil characteristics. By coupling comparative soil
composition analyses with AD and KS amplicon diversity measure-
ments, we were able to identify soil types (i.e., soils with similar
physiochemical characteristics) with increased biosynthetic po-
tential. AD and KS amplicon data were also used to determine
the geographic distribution of gene clusters predicted to encode
for metabolites that are evolutionarily related to families of natural
products with known bioactivities. In doing so, we observed soil
type–specific secondary metabolite gene cluster enrichment
patterns that suggest the presence of functionally similar meta-
secondary metabolomes in similar soil types. Soil type also corre-
lates with species diversity trends observed in these microbiomes.
Although the functional consequences of these soil type gene
cluster enrichment patterns is not yet clear, it suggests that
secondary metabolomes may play a conserved role in the ecology
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of geographically distant soils that share similar soil type char-
acteristics. The chemical-biogeographic data afforded by biosyn-
thesis gene-driven molecular phylogenetic-type analyses should
help to better illuminate the hidden metasecondary metabolomes
within diverse soil microbiomes, as well as to direct the future
discovery of additional novel bioactive natural products.

Results and Discussion
AD and KS Operational Taxonomic Units and Rarefaction Analyses
from Diverse Soil Types. Topsoil was collected from 96 sample
locations throughout the southwestern and northeastern United
States (Fig. 1B). The states of Arizona and New Mexico, from
which the southwestern soils were collected, were chosen as
collection sites because they are considered to be two of the most
biologically diverse regions in the continental United States (13).
New England was selected as the second collection site because
it is geographically distant and ecologically distinct from the
southwestern collection sites. Specific collection sites from within
these areas were chosen to optimize variations in altitude, rainfall,
dominant flora, soil phenotype, and land use (Dataset S1). Each
soil sample was assigned one of eight general descriptors based on
our visual assessment of the immediate area surrounding the site
from which topsoil was harvested [e.g., desert, arid forest, arid
farm, alpine (high-altitude) forest, pine forest, farmland, grassland
or salt-water marsh; Fig. 1B].
DNA extracted directly from each soil sample (eDNA) was

used as template in PCR reactions with AD and KS domain-
specific degenerate primers. In preliminary small-scale studies,
these degenerate primers were shown to be capable of amplify-
ing diverse collections of AD and KS domains from eDNA (14,
15). The resulting PCR amplicons were 454 pyrosequenced, and
cleaned reads were clustered at a genetic distance of 5% to
compensate for potential sequencing and PCR errors (Table S1,
see Materials and Methods for read processing details). Each
unique 95% identity cluster was considered to be an AD or KS
operational taxonomic unit (OTU) representing a unique natural
product biosynthesis sequence tag. Rarefaction curves were
generated that display the average Chao1 diversity metric for
repeatedly subsampled AD and KS OTU data (Fig. 1C and Fig.
S1). A potential drawback of using the degenerate primers is the
introduction of primer-dependent bias leading to amplicon pools
that are skewed relative to the underlying sequence diversity. For

the comparative analyses describe here, primer bias should not
affect the general conclusions as intersample comparisons are
equally biased and global diversity estimates will err on the
conservative side. For both KS and AD domains, Chao1 diversity
estimates range from less than 1,000 to greater than 7,000 OTUs
per soil microbiome. Soils with the highest KS and AD domain
richness estimates arise from a subset of southwestern arid
environments, whereas brackish water and New England forest
environments show the lowest richness estimates (Fig. 2B).
Surprisingly, no significant differences in biosynthetic richness
estimates were seen between cultivated and uncultivated soils
harvested from neighboring locations.

Soil Principal Component Analysis. In an attempt to better un-
derstand the relationship between soil type and biosynthesis
domain richness, we sought to classify each soil microenviron-
ment through a quantitative analysis of basic soil characteristics
(e.g., pH, moisture, soil granularity, organic matter, mineral
composition; Dataset S1). The aggregated data from this analysis
was submitted to a principal component analysis (PCA; Fig. 2B),
which clustered soil samples into two larger groups (groups A
and B) and one smaller group (group C). The two larger groups
(A and B) separate along the first principal component axis,
largely according to geographic location, with group A repre-
senting southwestern soils and group B representing a subset of
northeastern soils drawn mostly from forest soils. The third
group (group C) is a subset of northeastern samples that were all
collected from brackish coastal environments (Fig. 2B). Despite
major differences in flora and visual soil appearance (Fig. 1B),
group A soils share a number of key characteristics that result in
the observed PCA grouping (Figs. 1B and 2B and Fig. S2). They
are low in moisture and organic content and have elevated cal-
cium, copper, and phosphorus levels. Meanwhile, group B soils
are more acidic (pH < 5) and organic rich and show elevated
concentrations of an orthogonal set of minerals (e.g., iron and
aluminum). Group C soils are distinguished by comparatively
high concentrations of sodium, sulfur, boron, and vanadium.

Soil PCA-Based Richness Analysis. The number of cleaned 454 se-
quencing reads varied from sample to sample (Table S1). To
permit the most robust direct comparisons between observed
domain diversity and PCA soil groupings, we subsampled the

Fig. 1. Profiling of soil AD and KS domain abundances. (A) Nonribosomal peptides and polyketides are synthesized by gene clusters sharing a common
assembly line–based logic that provides targets for degenerate primer based PCR analysis of biosynthetic diversity. (B) For this study, DNA was isolated
directly from soils collected in the southwest and northeast regions of the United States. (C) Chao1 rarefaction curves generated from pyrosequenced AD
and KS domains amplified from these samples can be used to estimate biosynthetic diversity (Left) and display groupwise average richness in different soil
types (Right).
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sequencing data obtained from each soil to the same depth. KS
and AD domain Chao1 diversity estimates were generated for
the subset of 65 soil samples that yielded sufficient sequencing
data to permit comparisons of 3,500 cleaned reads for each of
these domains. Although domain diversity estimates differ within
each PCA soil group, on average group A soils (arid environ-
ments) show the highest AD richness estimates and group C
soils (brackish environments) show the lowest richness estimates

(Fig. 2C). Group A soils also tend to show higher KS domain
richness estimates than either groups B or C, which are essentially
indistinguishable from each other in predicted KS richness.
Differences in the composition of bacterial species found in

arid soils compared with that found in forest and brackish soils is
likely to partially account for the differences in AD and KS
domain richness observed in our analysis. Sequencing data from
cultured bacterial genomes suggest that NRP and KS bio-
synthesis is disproportionally found in a subset of bacterial phyla
(e.g., Actinomycetes, γ-Proteobacteria, Cyanobacteria) (16). A
population bias toward these species would result in greater
observed AD and KS amplicon richness. Many of the low di-
versity samples in our analysis are derived from the acidic pine
forests of Maine (Fig. 2D). Low soil pH has not only been cor-
related with low species diversity but has also been shown to
skew soil species composition toward the Acidobacterial phylum
and therefore away from more NRP/PK-rich phyla (17). Soil type
species composition differences are further highlighted by the
fact that NRP and KS rich Actinomycetes have been observed to
comprise up to 40% of the observed bacterial population in
desert soils but as little as 4% of the total bacterial population in
forest environments (18).
To assess whether AD and KS richness correlates with Acti-

nomycetes species diversity in our samples, 16S gene–based tax-
onomic information was obtained for 80 of our eDNA samples.
These data were used to calculate the relative abundance of
major bacterial phyla in each sample. Group A samples do in
fact show a higher relative abundance of Actinomycetes (Fig. 2C)
compared with either group B or C samples (Fig. 2E and Fig.
S3), implicating differences in Actinomycetes richness as a driving
force behind observed difference in AD- and KS- richness.

Correlations Between Soil Parameters and Biosynthetic Richness.
Pearson coefficients were calculated between the KS and AD
domain richness of each soil sample and each of the measured
soil parameters to look for factors that might show simple linear
correlations with observed domain richness (Fig. 2D, Lower). A
number of the soil parameters show linear correlations with
observed KS and AD domain richness as measured in this
Pearson analysis, including positive linear correlations between
biosynthetic domain sequence richness and potassium, calcium,
and pH (Fig. 2D). The strongest negative linear correlations are
seen between domain richness and moisture content, active
carbon content, and selenium (Fig. 2D).

Global Comparative AD and KS Population Analysis. The similarity
between the biosynthetic sequence profile of individual soils was
determined using the Jaccard distance (19, 20). The Jaccard
distance is determined by pooling the OTUs from two samples
and representing their relatedness as the ratio of shared to total
OTUs subtracted from 1 (20). A Jaccard distance of 1 therefore
represents completely nonoverlapping OTU populations, whereas
a distance of 0 indicates that samples have identical OTU pop-
ulations. Two independent control sequencing experiments that
were expected to yield similar KS and AD domain populations
were included in our Jaccard analysis. In one set of sequencing
controls (resequencing controls: C1–C5), the same AD and KS
PCR amplicons were sequenced twice. In the second set of se-
quencing controls (proximity controls: PAD, PKS), eight forest soil
samples collected ∼10 m from one another were processed and
sequenced independently.
When the Jaccard comparisons of AD and KS amplicon pools

from different soils are plotted as a network diagram with
a Jaccard distance threshold of 0.99 (at least 1% shared OTUs),
we see clustering patterns that broadly correspond to the pre-
dicted PCA soil groupings (Fig. 3A). Largely, KS and AD do-
main populations from group A (arid) soils cluster together,
group B (forest) soils cluster together, and group C (brackish)
soils cluster together. When the Jaccard threshold is lowered to
0.85 (at least 15% shared OTUs), the few remaining clusters are
dominated by our control studies [e.g., resequencing (c) and

Fig. 2. Comparative richness analysis. (A) Chao1 richness estimates of evenly
rarefied samples plotted by soil type. (B) PCA grouping of soils based on
quantitative soil property data. (C) Regrouping of Chao1 AD and KS results
by PCA groupings (Left) and percent of unique 16S OTUs that were anno-
tated as Actinomycete (Right). (D) Pearson correlations of Chao1 richness
with soil data (Lower; full data available in Table S2) and the linear corre-
lation of a subset of those factors with observed richness (Upper). (E) 16S-
based phylum composition data for each soil sample.
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proximity controls (p); Fig. 3A]. The only noncontrol relation-
ship cluster that remains at this threshold is composed of AD
sequences derived from brackish, high-salt environments (s),
suggesting these samples are not only low in observed bio-
synthetic diversity (Fig. 2B) but are also more similar to one
another in biosynthesis gene content than soils from within either
group A or group B.
Although all soils in our study appear to be quite distinct from

one another in specific KS and AD sequence content (with the
exception of the proximity controls), soils from within the same
soil type PCA group show higher relatedness to each other than
they do to soils from other PCA groups. Even among the most
closely related control samples, as many as 90% of the OTUs
differed. However, at the depth we sequenced, we cannot say for
certain that unique OTUs in one sample would not be found in
another sample as rare OTUs with additional sequencing. Our
soil proximity control study suggests that we have sequenced
deeply enough to identify soils with highly similar populations of
AD and KS sequences.
To better understand the sequence overlap in related control

samples, the percent of sequences common to each control was
determined as either a fraction of common OTUs shared by the
samples or as the fraction of total reads these common OTUs
account for (Fig. 3B). Although control samples may only have
20–30% of OTUs in common, these OTUs account for as much
as 70% of the reads in these samples (i.e., ∼70% identical se-
quencing data), thus indicating datasets with significant sequence
overlap were generated in both control experiments. The control
sequencing experiments therefore suggest that, although we are
likely only sampling a subset of the biosynthetic sequence di-
versity present in any specific soil microbiome, at this sequencing
depth (∼70–80% of observed OTUs are not shared in analysis of
identical samples), we have obtained sufficient sequence cover-
age to identify closely related samples.

Predicting the Distribution of Gene Clusters That Are Evolutionarily
Closely Related to Known Clusters. A common theme in natural
products chemistry is the existence of families of molecules
whose related structures derive from evolutionarily related gene
clusters. We recently showed that the individual AD and KS
natural product sequence tags exhibiting the highest identity to
AD and KS domain fragments found in functionally character-
ized (known) gene clusters can serve as markers for the presence
in the environment of novel gene clusters that are functionally
related to these known clusters (9). Although functional rela-
tionships predicted from sequence tags alone will not be perfect,
the systematic examination of such relationships found in
amplicon data sets derived from diverse soils should, for the first
time, permit at least the low-resolution metafunctional com-
parison of secondary metabolomes across distinct microbiomes.
With this in mind, we probed all amplicon datasets using the
bionformatics Environmental Surveyor of Natural Product Di-
versity (eSNaPD) tool (9). eSNaPD uses a BLAST-based algo-
rithm to identify eDNA-derived natural product sequences that

are related to functionally characterized natural product bio-
synthetic gene clusters (9). A hit from the eSNaPD algorithm is
indicative of there being an AD or KS domain sequence in
a microbiome that is most closely related to the corresponding
domain sequence from a known gene cluster and is taken to be
an indication that this particular microbiome has a high likeli-
hood of containing a gene cluster that encodes a metabolite that
is both structurally and functionally related to that encoded by
the known gene cluster (i.e., a member of the same natural
product family).
From the eSNaPD data, it is possible to generate chemical-

biogeographic maps representing the predicted occurrence and
frequency of natural product gene cluster families in the envi-
ronment, which should be useful for guiding future natural
product discovery efforts. Fig. 3B shows the distribution of
amplicons that were assigned to three biomedically important
natural product families: glycopeptide antibiotics, lipopeptide
antibiotics, and rapamycin-like immune regulators. At a lower
limit expectation value (e-value) threshold of e−45, ∼10% of soil
amplicons mapped to a KS or AD domain from a gene cluster in
the current eSNaPD database (Dataset S2). Each soil was found
to vary in both the composition and abundance of eSNaPD hits.
Taken together, amplicon data from all soils hit to 226 of the
gene clusters in eSNaPD (Fig. 4A and Fig. S4). As might be
expected from the rarefaction analysis (Fig. 2C), on average,
amplicon pools from group A soils map to a larger number of
known gene cluster families than amplicons from either group B
or C soils (Fig. 4A). Among the soils we examined, arid soils are
therefore predicted to be the most productive sources of gene
clusters capable of encoding novel members of known bio-
medically relevant families of natural products.

Global Correlations Between eSNaPD Predictions and Soil Type. Al-
though each soil we examined produced a unique eSNaPD
output (Fig. 4A, Lower), a close examination of these data sug-
gested the presence of several soil type–specific patterns. We
therefore looked for possible correlations between the enrich-
ment of specific gene cluster families within each microbiome
and the physiochemical properties of the corresponding soils. A
pairwise Pearson correlation analysis was performed between
each quantitative soil parameter and the eSNaPD hit counts to
individual known gene clusters. A heat map displaying this
Pearson correlation analysis shows unexpectedly clear enrich-
ment trends between the eSNaPD-predicted occurrence of spe-
cific natural product gene clusters and subsets of soil parameters
(Fig. 5A). These correlations are especially apparent when soil
parameters are arranged to mimic the principle components that
most influence the PCA soil groupings (Fig. 5A). Chemical-
biogeographic maps of the eSNaPD hit frequency for sequence
tags that recognize individual known gene clusters across all soils
examined further illustrate these trends (Fig. 5B).
As can be seen in the individual eSNaPD hit frequency maps

(Fig. 5B), gene cluster families are not predicted to be exclusively
found in a single soil type; however, they appear to be in soil
type–specific gene cluster enrichment patterns. Although the
specific natural product structures encoded by each soil micro-
biome within a PCA group are undoubtedly different (as ex-
emplified by the large differences in specific domain sequences
we observed), our analysis suggests that microbiomes from sim-
ilar soil types may be enriched for the biosynthesis of functionally
related collections of secondary metabolites (as exemplified by
similar eSNaPD enrichment patterns). To the best of our knowl-
edge, this study shows a previously unidentified potential micro-
biome-wide correlation between the metasecondary metabolome
(i.e., the collective group of metabolites encoded by a micro-
biome) of a soil microbiome and the physiochemical character-
istics of the soil environment in which the microbiome resides.
The metasecondary metabolome of an environmental sample is
encoded by the collection of organisms within a microbiome, and
therefore, it is not surprising to find that differences in soil
species composition also appear to correlate with the physical

Fig. 3. Beta diversity. (A) Network diagram of samples (nodes) that are
linked if they are within the specified Jaccard distance. (B) Shared OTUs of
control samples [C1–C5, duplicate samples; PAD, PKS, proximity controls
(pairwise average)] plotted as a percentage of shared OTUs between sam-
ples (dark blue) and also as a percentage of shared reads (light blue).
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parameters of soils. Clustering of soil samples by 16S composi-
tion (Fig. S5) results in groupings similar to those generated
using soil composition data. As natural products are known to
play a role in many basic biological processes including inter- and
intraspecies signaling, defense and nutrient uptake, predicted
soil-specific molecule enrichment patterns likely parallel con-
served global ecological aspects of different soil microbiomes.

Conclusion. The use of amplicon sequencing to profile soil micro-
biomes is an attractive approach for assessing the biosynthetic
potential of diverse microbiomes to a depth that is still inaccessible
via shotgun sequencing. Previously, investigation of natural prod-
uct biodiversity using amplicon sequencing had only been applied
to a small number of marine and terrestrial environments (21–25).
Our study of nearly 100 unique soil samples builds on these earlier
small-scale studies to provide a more detailed picture of the dis-
tribution of secondary metabolite gene clusters throughout soil
microbiomes. In our analysis, we observed a correlation between

soil type and both the biosynthetic richness and the predicted
secondary metabolomes encoded by soil microbiomes. In general,
arid soils show the richest observed biosynthetic diversity, whereas
brackish sediments and pine forest soils show the least bio-
synthetic richness. Mapping individual sequence reads to related
sequences from known biosynthetic gene clusters demonstrates
soil type–specific secondary metabolome enrichment patterns
despite significant sample-to-sample sequence variation. Although
the functional consequences of the observed enrichment patterns
is not yet clear, it suggests that similar soil types contain func-
tionally related collections of secondary metabolites that likely
play conserved roles in the ecology of these soils.

Materials and Methods
Soil Collection and Characterization. Topsoil was collected from 96 sites in the
United States: 33 from Arizona, 21 from New Mexico, and 42 from New
England (Fig. 1B). All samples were collected during the summer and were
analyzed for moisture, pH, granularity, and the mineral and organic content

Fig. 4. eSNaPD analysis. (A) All hits from the eSNaPD homology search algorithm are aggregated by sample and plotted as the number of eSNaPD domains
identified in that sample (Upper) or as a normalized bar chart. The stacked bar chart contains 226 bars representing the 226 well-studied natural product gene
clusters to which metagenomic AD and KS amplicon sequences are mapped using the eSNaPD analysis (full legend and data are provided in Fig. S4 and
Dataset S2). Proximity controls from adjacent areas are highlighted in black. (B) eSNaPD can be used to identify and target samples containing gene clusters
functionally related to know clusters. eSNaPD-derived chemical-biogeographic maps and raw frequency data for glycopeptide antibiotics (i.e., the antibiotics
of last resort, vancomycin, teicoplain, etc.), the lipopeptide antibiotics (i.e., the most recent class of antibiotics to be approved for clinical use, daptomycin,
friulimicin, etc.), and the rapamycin-like immune regulators (rapamycin, FK228, etc.).

Fig. 5. Regional variations in molecule abundance. (A) Pearson coefficient calculations for each soil parameter to eSNaPD abundance count were calculated
and plotted as a heat map. eSNaPD molecules are on the vertical axis. Row and columns were arranged to highlight the soil parameters that best define the
PCA soil froups A (red), B (green), and C (blue). (B) Chemical-biogeographic eSNaPD hit distributions maps for four group A (red), group B (green), and group C
(blue) enriched gene clusters.
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of the soils by the Soil Health Laboratory at Cornell University (Dataset S1).
Numerical data were submitted to PCA within R after first scaling each
column by subtracting the column mean and normalizing to a variance of
one. The princomp command was used to calculate the principal compo-
nents, and the first two or three principal components for each sample were
used as coordinates to create 2D (Fig. S1) and 3D (Fig. 2B) plots using the
ggplot2 and rgl packages (26).

Processing 454 Data: AD and KS. Raw reads were assigned to samples using the
unique primer barcodes and filtered by size (350–500 bp) and quality (50-bp
rolling window PHRED cutoff of 20) using the Qiime pipeline (version 1.6)
(27). Insertion/deletion errors due to pyrosequencing were addressed using
200 rounds of denoising with Denoiser (28). Chimeric sequences were re-
moved using the de novo chimera detection tool of USEARCH with the de-
fault 1.9 skew value (29). Quality filtering, denoising, and chimera detection
reduce the original dataset of ∼2.5 million reads to a final cleaned dataset of
∼1.25 million reads: 629,929 for AD and 558,503 for KS.

Clustering, Rarefaction, and Diversity Analysis: AD and KS. USEARCH (29) was
used to cluster cleaned AD and KS datasets using 95% percent identity
threshold. Global α diversity curves (Fig. 1C) were generated by repeatedly
(10×) subsampling each dataset at evenly spaced intervals up to 5,000 reads
using the α diversity utility within Qiime (27). The average Chao1 diversity
estimates for each sample were plotted as both individual samples and ag-
gregated by soil type (Fig. 1C and Fig. S2). The variability in sequencing
depth across samples in both AD and KS domain sequencing prohibits
straight richness comparison among samples. To allow for intersample
comparisons, a subsampling depth of 3,500 reads was chosen for both AD
and KS sequences that allowed us to include 65 soil samples. These rarefied
OTU tables were imported into the Phyloseq program (19), which was used
to calculate and compare species richness (Fig. 2) and to calculate and plot
OTU overlap between samples (Fig. 3) using the Jaccard distance metric [1 −
(OTUA&B)/(OTUA + OTUB)] (20). Intersamples distance of controls were cal-
culated using the OTU tables by expressing shared OTUs as either a fraction
of total OTUs or by summing the reads found in shared OTUs and expressing

them as fraction of the total per-sample reads (3,500 reads; Fig. 3B). For
control samples with greater than one sample (PAD, PKS), the average for all
pairwise distances was calculated.

Assignment of AD and KS Domains to Known Gene Clusters. AD and KS
amplicon reads were assessed for their relationships to known biosynthetic
gene clusters using the eSNaPD algorithm at an e-value of 10−45 (9). The
eSNaPD algorithm is a two-step BLAST-based process that queries a database
of known domains and then uses a negative selection step to weed out low-
quality reads. It is a semiempirical program that has been used to successfully
assign and recover gene cluster homologs of known natural products using
only sequence from a single domain amplicon. NRPS/PKS clusters typically
have multiple KS or AD domains; hits against any of the domains in a cluster
were aggregated together. The eSNaPD OTU table was calculated, and the
number of eSNaPD hits per sample was calculated (Fig. 4A, Upper). The full
dataset was normalized on a per-sample basis and displayed as a stacked bar
chart where each bar is the fractional representation of individual eSNaPD
hits (Fig. 4A).

Soil Richness and Soil Molecule Abundance Correlations. To assess possible
correlations between individual soil parameters and AD and KS diversity, the
Chao1 richness estimates for AD and KS for each subsampled soil were
summed to create a single per-sample richness metric. The Pearson corre-
lation of this richness metric with each physical-chemical soil property was
calculated across all samples, and the correlation is displayed (Fig. 2D, Lower)
with select parameters plotted (Fig. 2D). Pearson correlations between raw
eSNaPD hit counts and physico-chemical data were similarly calculated. The
resulting coefficient matrix is plotted as a heat map [NeatMap (30)] where
rows/columns are positioned adjacent to similar rows/columns. Chemical-
biogeographic maps (Figs. 4B and 5B) of a subset of molecules were gen-
erated by plotting circles scaled to match the eSNaPD abundance counts.
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